爱采购

发产品

  • 发布供应
  • 管理供应

标准曲线的制作与使用

   2021-02-24 2010
导读

标准曲线的制作与使用


      

标准曲线的本质

 

分析检测中的标准曲线是指一系列已知含量(浓度/量)的物质与仪器响应/信号之间的关系,数学处理就是曲线方程,图形表示就是标准曲线。标准曲线的目的是可以根据标准曲线查出待测物质的含量。当我们得到一系列已知含量的物质的响应后,就会去建立函数关系,数学上称曲线拟合,由于直线最为简单,所以常常用直线方程加以拟合,当然会用到多项式拟合等其他方式。

 

标准曲线的核心问题要解决:

 

1、能找到确切浓度的标准物质或标准品。

 

2、标准系列和待测物质一定要有相同和一致的基体,因为样品基体可能会干扰仪器的响应,从这个意义上讲,样品的前处理实际就是提供标准和样品同样的基体环境,尽量祛除干扰基体。所以最好的标准系列应该是样品基体匹配的标准系列。

 

而方法建立过程中首先要考虑的当然是基体干扰的问题,推荐用标准加入曲线和Youden曲线分别考察样品基体所带来的乘积性干扰和加和性干扰。标准加入曲线就是在样品中加入一系列标准,然后考察该标准加入曲线和标准曲线斜率的统计学差异,若有差异需考虑用标准加入法定量;而Youden曲线就是对样品做一系列稀释,然后用稀释倍数如1/10,1/5,1/2,1对仪器响应做曲线,考察该Youden曲线的截距与0的差别,若有差别则提示有加和性干扰,此时测定值要减去该截距才是真实值。只有解决了标准曲线与样品基体的匹配问题,我们的定量才可靠。内标法和替代物的使用则是为了解决仪器和前处理的影响问题。


 

 


标准曲线的做法

 

按GB/T 22554-2010《基于标准样品的线性校准》推荐:

 

1、标准曲线的浓度范围应覆盖正常操作条件下的被测量范围;

 

2、标准样品的组分尽量与被测样品组分一致;

 

3、标准样品的浓度值应等距离的分布在被测量范围;

 

4、标准样品的个数至少应有3个浓度;

 

5、每个标准点至少重复2次,这个重复是指从稀释开始。

 

如果国家标准有相应的浓度系列推荐,尽量按国家标准,如果你要偷懒,比如我要减少标准点,至少要有理论标准支撑,比如至少要3个浓度。工作中我们经常采用线性校准,因为线性方程最为简洁。


 

图片
标准曲线的检验

 

标准曲线的检验是实际操作中最大的难点,也是工作中误区和争议最多的话题,比如GB/T 5750.3-2006就将标准曲线的检验分为:精密度检验,截距检验和斜率检验,但并未出示具体的检验方法。

 

首先讲讲这三个检验,标准曲线的精密度检验,实际含义就是做出来的试验点在我们拟合的直线方程左右的分布情况,标准曲线是所有点以最小二乘算法(OLS)拟合出来的,这条曲线到所有点的垂直距离的和(残差)是最小的。

 

因此这条曲线并非通过所有点而是非常接近所有点,精密度检验就是看这些试验点距离拟合的直线的距离有无异常,所以也称线性检验(拟合检验)。这时的精密度(线性检验)需用F检验,P<0.05作为线性检验合格的标准。

 

标准曲线的截距检验和斜率检验分别考察Y=a+bX中a和b与0的统计学差异,a与0有差别说明有试剂空白或系统误差,而b若与0没差别说明仪器的灵敏度根本达不到分析要求。日常工作中我们通常用相关系数来作为标准曲线好坏的标准,这点有一定道理,但并不全面。

 

决定系数是相关系数的平方,就是我们经常在仪器软件中看到的R2或Fit,它提示的是我建立的回归方程所解释X对Y变化占Y变量的比值,比如决定系数是0.99也就是说这个回归方程可以解释Y变化的99%,剩下的1%就是残差。前面提到的精密度(线性检验)就是用这两部分的变化做F检验,由于统计检验的临界值比较大,通常0.90以上的相关系数都会通过这个F检验,当然还与实验点数(自由度)有关。

 

这里要提到GB/T22554-2010《基于标准样品的线性校准》中关于失拟检验的问题,这里的失拟检验是要看曲线拟合后剩下残差与实验数据本身随机误差(变异)之间的差别,同样采用F检验,此时失拟检验P应该>0.05,也就是说残差应该跟实验测定中的随机误差(变异)没有差别,你要看每次测定的随机误差(变异)就必须多次测定同一浓度,因此失拟检验要求每个浓度点至少重复2次。

 

除此之外,最后我们还要看看这些残差的分布是否是正态的,因为正态才符合随机误差的特性。

 

综上所述,标准曲线的检验应该是线性检验结合失拟检验,以及残差的正态性检验结合才是统计学上比较完备的。通常我们采用的相关系数0.99以上的说法缺乏统计完备性。正如大家经常看到的改变拟合的参数个数,如二次方程明显能提高相关系数,但是我们经常没有勇气去用二次曲线方程,因为你没有统计学上完备的支撑。如果你发现标准曲线在低浓度和高浓度点的变异程度不同(非等方差),此时你应该考虑权重最小二乘(WLS)。


版权与免责声明:

① 凡本网注明"来源:科学仪器网"的所有作品,版权均属于科学仪器网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:科学仪器网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

 

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为默认科学仪器网有权转载。

 
举报收藏 0打赏 0评论 0
免责声明
• 
本文为原创作品,作者: 。欢迎转载,转载请注明原文出处:https://www.acinstruments.com/news/show.php?itemid=1058 。本文仅代表作者个人观点,本站未对其内容进行核实,请读者仅做参考,如若文中涉及有违公德、触犯法律的内容,一经发现,立即删除,作者需自行承担相应责任。涉及到版权或其他问题,请及时联系我们。
 
更多>同类资讯头条

入驻

企业入驻成功 可尊享多重特权

入驻热线:16622807805

请手机扫码访问

客服

客服热线:16622807805

小程序

小程序更便捷的查找产品

为您提供专业帮买咨询服务

请用微信扫码

公众号

微信公众号,收获商机

微信扫码关注

顶部