一、原子吸收光谱的原理
当有辐射通过自由原子蒸气,且入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子就要从辐射场中吸收能量,产生共振吸收,电子由基态跃迁到激发态,同时伴随着原子吸收光谱的产生。
二、原子吸收光谱仪组成
由光源、原子化器、分光器、检测系统等几部分组成。基本构造见下。
由光源、原子化器、分光器、检测系统等几部分组成。基本构造见下。
1) 光源
光源的功能是发射被测元素的特征共振辐射。对光源的基本要求是:
1、 发射的共振辐射的半宽度要明显小于吸收线的半宽度;
2、 辐射强度大、背景低,低于特征共振辐射强度的1%;
3、 稳定性好,30分钟之内漂移不超过1%;噪声小于0.1%;
4、 使用寿命长于5安培小时。
空心阴极放电灯是能满足上述各项要求的理想的锐线光源,应用最广。
空心阴极放电灯
空心阴极放电灯的结构如图3.6a所示。它有一个由被测元素材料制成的空心阴极和一个由钛、锆、钽或其它材料制作的阳极。阴极和阳极封闭在带有光学窗口的硬质玻璃管内,管内充有压强为2-10mmHg的惰性气体氖或氩,其作用是产生离子撞击阴极,使阴极材料发光。
空心阴极灯放电是一种特殊形式的低压辉光放电,放电集中于阴极空腔内。当在两极之间施加几百伏电压时,便产生辉光放电。在电场作用下,电子在飞向阳极的途中,与载气原子碰撞并使之电离,放出二次电子,使电子与正离子数目增加,以维持放电。正离子从电场获得动能。如果正离子的动能足以克服金属阴极表面的晶格能,当其撞击在阴极表面时,就可以将原子从晶格中溅射出来。除溅射作用之外,阴极受热也要导致阴极表面元素的热蒸发。溅射与蒸发出来的原子进入空腔内,再与电子、原子、离子等发生第二类碰撞 而受到激发,发射出相应元素的特征的共振辐射。
空心阴极灯常采用脉冲供电方式,以改善放电特性,同时便于使有用的原子吸收信号与原子化池的直流发射信号区分开,称为光源调制。在实际工作中,应选择合适的工作电流。使用灯电流过小,放电不稳定;灯电流过大,溅射作用增加,原子蒸气密度增大,谱线变宽,甚至引起自吸,导致测定灵敏度降低,灯寿命缩短。
2)原子化器
原子化器的功能是提供能量,使试样干燥,蒸发和原子化。 在原子吸收光谱分析中,试样中被测元素的原子化是整个分析过程的关键环节。实现原子化的方法,最常用的有两种:
火焰原子化法:是原子光谱分析中最早使用的原子化方法,至今仍在广泛地被
应用;
非火焰原子化法,其中应用最广的是石墨炉电热原子化法。
3)分光器
分光器由入射和出射狭缝、反射镜和色散元件组成,其作用是将所需要的共振吸收线分离出来。分光器的关键部件是色散元件,现在商品仪器都是使用光栅。原子吸收光谱仪对分光器的分辨率要求不高,曾以能分辨开镍三线Ni230.003、Ni231.603、Ni231.096nm为标准,后采用Mn279.5和279.8nm代替Ni三线来检定分辨率。光栅放置在原子化器之后,以阻止来自原子化器内的所有不需要的辐射进入检测器。
4)检测系统
原子吸收光谱仪中广泛使用的检测器是光电倍增管,最近一些仪器也采用CCD作为检测器。有关光电倍增管和CCD检测器的原理已在2.3.1.3节介绍过。